
Project Report: Quadrotor Planning and Control

Team 11: Kaitian Chao, Jiakai Zheng, Puen Xu, Longqi Wei

I. INTRODUCTION AND SYSTEM OVERVIEW

Our goal for Lab 1.4 is to test and validate our
control and navigation algorithms on the Crazyflie 2.0
quadrotor in a real-world lab environment. Additionally,
we aim to ensure that Crazyflie 2.0 can relatively accu-
rately reach all the provided positions while navigating
through different maps and mazes. This is achieved by
tuning parameters (such as resolution, margin, values
in PD control matrices, and velocity of Crazyflie 2.0)
and refining our programs that were proved valid in
simulations (which, in our case, involves changing the
controlling algorithm from PID to PD), in order to
avoid/reduce the impact of factors that exist in real
experimental environment, such as air resistance, noise
in communication between lab computer and quadrotor,
and so on.

As for robot capabilities throughout the two sessions
before and after the spring break, Lab 1.4.1 focuses on
the ability to stabilize in the hovering situation, follow
predefined waypoints both vertically and horizontally
relative to the ground, and adjust control parameters
(values in PD control matrices and velocity) to achieve
smooth and accurate flight in the real world. On the
other hand, based on codes that were optimized in 1.4.1,
Lab 1.4.2 considers the ability to autonomously generate
and execute a feasible path through an environment
with obstacles (using A* to plan the origin path and
minimum jerk/RDP to optimize and gain the final trajec-
tory), demonstrating effective path planning and control
adjustments.

There are three main hardware components used in
the whole experiment:

1. Crazyflie 2.0 quadrotor, which is a micro quad-
copter used to validate our control and navigation algo-
rithms in the real world. It can also provide additional
sensor data from its onboard IMU;

2. VICON System, which is a motion tracking sys-
tem connected to a separate PC and provides real-time
position information of Crazyflie 2.0;

3. Lab computers, which have two different functions:
(1) controlling the quadrotor to take off and land, and (2)
running our main control and trajectory planning scripts
to gain an optimized path for the map in .json file, pro-
cessing the data collected from VICON and quadcopter
sensors, and sending commands to the quadcopter.

To sum up, with the sensing function of Crazyflie 2.0
and VICON system, and the computation and control

function of lab computers, our experiments were suc-
cessfully done.

For the quadrotor, calculated trajectory, waypoints and
specific commands (take off/land commands, velocity
range, PD values and other control details) are sent from
lab computers; As for lab computers, they receive real-
time position data of Crazyflie from VICON system,
sensor data from Crazyflie IMU sensor, which are used
for post-experiment analysis that will be done in the
following parts. This process is shown below in Fig. 1.

Fig. 1. Information communication inside the whole system

II. CONTROLLER

The intuition of our position controller is to calculate
the error between the position x(t) and the desired
position xdes(t) and the error between the velocity ẋ(t)
and the desired velocity ẋdes(t), and to perform an error
correction and make the error converge to 0.

We calculated the desired acceleration and the total
thrust:

ades = ẍdes −Kd(ẋ− ẋdes)−Kp(x− xdes) (1)

The total thrust vector compensates for gravity:

Fdes = m(ades + gez) (2)

The actual thrust command is projected onto the
drone’s z-axis:

u1 = b⊤
3 Fdes, b3 = R[:, 2] ∈ R3 (3)



The desired orientation matrix Rdes is constructed by:

b3,des =
Fdes

∥Fdes∥
(4)

b2,des =
b3,des × aψ
∥b3,des × aψ∥

, aψ =

cosψsinψ
0

 (5)

b1,des = b2,des × b3,des (6)

Rdes =
[
b1,des b2,des b3,des

]
(7)

The attitude tracking error and moment command are
given by:

eR =
1

2

(
R⊤

desR−R⊤Rdes

)∨
(8)

τ = I(−KReR −Kωω) (9)

The rotor speeds ωi are obtained by solving:
u1
τx
τy
τz

 =


1 1 1 1
0 l 0 −l
−l 0 l 0
γ −γ γ −γ


︸ ︷︷ ︸

Allocation Matrix A


F1

F2

F3

F4

 , ωi =

√
Fi

kthrust

(10)
The most recently tuned control gains are below:

Kp = diag(3, 3, 6) s−2 (11)

Kd = diag(2.5, 2.5, 3.5) s−1 (12)
KR = diag(400, 400, 400)N ·m/rad (13)
Kω = diag(80, 80, 80)N ·m · s/rad (14)

Proportional gain Kp serves to generate an acceler-
ation command toward the target based on the error
between the current position and the target position, the
larger the error, the stronger the system response. The
differential gain Kd is then used to suppress oscillations
or overshoots due to too large Kp, which provides a
damping effect based on the error between the current
velocity and the target velocity, resulting in a smoother
convergence of the system to the target position. In our
data, its vertical (Z-axis) gain is significantly higher than
the horizontal to preferentially counteract the effect of
gravity on altitude control.

Our original control gains are below:

Kp = diag(20, 20, 500) s−2 (15)

Kd = diag(20, 20, 450) s−1 (16)
KR = diag(23000, 23000, 13700)N ·m/rad (17)
Kω = diag(2750, 2750, 2300)N ·m · s/rad (18)

Comparing with our previous control gains, we turned
down all of the K’s. The gains used in the simulation
are much larger than those used in the real flight
experiments, and it was only through a strategy of
gradually turning them up from 0 that we were able

to find gain combinations that were feasible and stable
in the experimental setting.

We thought that one of the possible reasons for the
adjustment is that in the simulation, we tend to assume
that the thrust and rotational inertia of the motors and
propellers are ideal models, whereas the real system
may be overshooting too much at high gain and causing
instability. In addition, in the simulation, we tend to
ignore disturbing factors such as gas flow, noise, etc.,
so a lower Kp or Kd is often required.

In this experiment, the performance indexes of the
controller are obtained and analyzed for the y-axis and
z-axis directions respectively: in terms of the y-axis, the
steady-state error is about 0.073m, the damping ratio
is about 0.207, the rise time is about 0.42s, and the
regulation time is about 9.33s, which reflects an obvious
underdamping characteristic, i.e., approaching the target
quickly but generating a large overshoot in a relatively
short rise time, thus prolonging the overall regulation
process; while the z-axis direction is about 0.1732m,
the rise time is about 0.82s, and there is almost no
overshoot phenomenon. The steady state error in the z-
axis direction is about 0.1732m, the rise time is about
0.82s, and the regulation time is about 6.79s, which is
almost no overshooting phenomenon, indicating that the
damping in this direction is larger or the control gain is
more conservative.

Fig. 2. Y Position versus Time



Fig. 3. Z Position versus Time

III. TRAJECTORY GENERATOR

To generate waypoints, we used the A* algorithm to
compute the optimal path on the maze. The Manhattan
distance was used as the cost metric, while the Euclidean
distance was used as the heuristic. After obtaining
the initial path, we applied the Ramer-Douglas-Peucker
(RDP) algorithm for waypoint simplification, setting the
tolerance parameter ϵ = 0.1.

To allocate time between waypoints, we calculated the
speed for each segment based on the distance between
consecutive waypoints. The drone moves faster when the
distance is large (indicating a straight path) and slower
when the distance is small (indicating an incoming turn).

For trajectory generation, we formulated a QP to solve
for a third-order polynomial. This approach minimizes
acceleration and ensures smooth transitions between
waypoints.

x∗(t) = argmin
x(t)

∫ T

0

(ẍ)
2
dt

The objective function is obtained by calculating the
quadratic cost for each time segment[

ci,2 ci,3
] [4ti 6t2i

6t2i 12t3i

] [
ci,2
ci,3

]
Assuming there is M segments, the position constraints
are

p1(0) = x0, pM (tM ) = xM

pi(ti) = pi+1(0) = xi, ∀i = 1, 2, · · · ,M − 1

The velocity boundary constraints are

ṗ1(0) = 0, ṗM (tM ) = 0

The velocity continuity constraints are

ṗi(ti) = ṗi+1(0), ∀i = 1, 2, · · · ,M − 1

After formulating the objective function and constraints,
we obtain the optimal solution by solving the KKT
system.

In Fig. 4, it depicts a plot over time of position,
velocity, acceleration, and jerk from the Map 2 run. We
could see that the trajectory is continuous in position
and velocity.

Fig. 4. Map 2: Position and Derivatives versus Time

IV. MAZE FLIGHT EXPERIMENTS

We have successfully completed the navigation tasks
through all three maps using our planner, trajectory
generator, and controller. This section presents our ex-
perimental results.

Fig. 5 through Fig. 7 illustrate the results for each
of the three maze runs. In each 3D plot, we show the
environment, the waypoints, the planned trajectory, and
the actual flight path taken by the quadrotor.

Fig. 5. Map 1: Waypoints, Planned and Real Trajectory

It is noteworthy to point out that, for Map 3, we
reduced the margin to 0.25 so that the drone can reach
the goal by crossing the window instead of traversing
around it. Furthermore, to provide a more detailed
analysis of the system’s performance, we present the
position and velocity profiles over time for this maze
run in Fig. 8.

To evaluate the tracking errors during the drone flight,
we analyzed both the 3D plot and the position profile
to compare the planned trajectory with the actual flight
path. For Map 1 and Map 3, the tracking errors were
relatively small, with maximum errors of 0.1 meters



Fig. 6. Map 2: Waypoints, Planned and Real Trajectory

Fig. 7. Map 3: Waypoints, Planned and Real Trajectory

and 0.3 meters, respectively, occurring during turns. In
contrast, the tracking error for Map 2 was larger due to
a challenging U-turn, where the maximum error of 0.6
meters occurs. However, when we reduced the margin
to 0.25 meters for Map 2 as well, allowing the drone
to pass through a window instead of navigating around
it, the errors decreased. This suggests that most tracking
errors arise during turning maneuvers, possibly due to
small position control gains. With this information, we
can develop trajectories that minimize sharp turns to
improve the tracking performance of the quadrotor.

We can create more aggressive trajectories by in-
creasing the speed. Given that we have a function that
calculates the speed for each segment based on the
distance between consecutive waypoints, to make the
trajectories more aggressive, we could increase the speed
further during straight-line motions. The increase in
speed could lead to larger tracking error but the error
could be reduced by tuning the controller gains.

If we had one more session in the lab to try something
new, we would like to test our algorithms on a cus-
tom, more complex map. An idea we had but couldn’t
implement due to time constraints was to combine all
three maps into a single map by starting from the origin

Fig. 8. Map 3: Position and Velocity versus Time

of Map 1, passing through the origin of Map 2, and
reaching the goal of Map 3. This combined map would
provide a more challenging environment, allowing us to
further assess the robustness and effectiveness of our
planner, trajectory generator, and controller.


