
Humanoid Gymnastics
Tuen Yue Tsui

University of Pennsylvania
tytsui@seas.upenn.edu

Puen Xu
University of Pennsylvania

puenxu@seas.upenn.edu

Abstract—Inspired by gymnastics, this work focuses on de-
veloping a sequence of motions for a humanoid robot: walking,
transitioning to running, leaping to grasp a horizontal bar, and
performing a swing-up as if executed by a skilled gymnast.
Due to time constraints, we develop and analyze each motion
individually, leaving the integration of these movements for future
work. The codes are available at github.

I. INTRODUCTION

Gymnastics has inspired the development of new robots
that mimic human movements. For instance, an acrobot is a
simplified model of a gymnast on a bar, where the passive
first joint represents the gymnast’s hands, and the actuated
second joint models the hip. [1] Another example is that Hyon
et al. developed a gymnastic robot capable of performing
various floor exercises, including jumping, somersaults, and
back handsprings. [2] Gymnastics also facilitates the imple-
mentation of new algorithms for robots to perform dynamic
maneuvers. Hodgins and Raibert examined the dynamics of
the forward flip and demonstrated how a planar biped running
machine can execute this gymnastic maneuver. [3]

Inspired by gymnastics, in this paper, we focus on devel-
oping a sequence of motions for a humanoid robot: walking,
transitioning to running, leaping to grasp a horizontal bar, and
performing a swing-up as if executed by a skilled gymnast.
Due to time constraints, we develop and analyze each motion
individually, leaving deliverables on the integration of these
movements.

II. BACKGROUND

A. Humanoid Robot Model

Our work focuses on a planar seven-link humanoid robot
as depicted in Fig. 5 (left). The generalized coordinates are
defined as [x, z, θ, q1, q2, q3, q4, q5, q6]

T ∈ R9, where (x, z, θ)
represents the robot position and orientation in the xz-plane,
q1, q3, and q5 are the shoulder, hip and knee joint angles on
the left side, respectively, and q2, q4, and q6 correspond to the
joint angles on the opposite side. The state vector is thus given
by [q, v]T ∈ R18 where v = q̇. The robot has actuators on each
of the six joints, and the actuator input space is denoted as
u = [u1, u2, u3, u4, u5, u6]

T ∈ R6.
In the swing-up setting, the robot hands are attached to

a horizontal bar as shown in Fig. 5 (right). The robot thus
no longer possesses the floating base and loses 3 Degrees
of Freedom in position and orientation in the xz-plane. In
the meantime, the robot arms form a closed kinematic chain
and loses 1 DoF of motion. Furthermore, we need to consider

the angle between the robot arm and the horizontal bar in
the plane, which adds 1 DoF to the model. As a result, the
generalized coordinates becomes [q1, q2, q3, q4, q5, q6]

T ∈ R6.
Noticing that although the robot has 6 actuators, both shoulder
actuators are applying torque on the same DoF, reducing one
dimension of the input space. Accordingly, u is given by
u = [u1, u2, u3, u4, u5]

T ∈ R5.

Fig. 1. Humanoid Robot Model

B. Operational Space Control

In operational space control (OSC), a robot is designed
to execute desired trajectories or forces in the task space
coordinate system. For example, OSC involves controlling the
position and orientation of the end-effector of a robot arm as
well as the center of gravity of a legged robot. [4]

The general problem in OSC for trajectory tracking involves
designing a control policy u = fControl(q, q̇, xd, ẋd, ẍd) that
controls the robot along a joint space trajectory q(t), q̇(t)
such that the system tracks a desired trajectory in task space
xd(t), ẋd(t), ẍd(t). [4]

C. Energy Shaping Control

Energy shaping control is used on underactuated systems
such as acrobots and cart-pole systems. It involves using partial
feedback linearization (PFL) to simplify or cancel out terms
in the nonlinear dynamics equations and certain Lyapunov
function to prove stability. [5]

To establish swing-up control of an acrobot, Spong used
collocated PFL to simplify the dynamics,

m11q̈1 + h1 + ϕ1 = −m12u, u = −k2q̇2 − k1q2 − ū

then chose addition control ū to swing up the second link,
where ū = Ẽq̇1, Ẽ = E − Ed, and Ed represents the desired
potential energy at the upright state of the acrobot. After the
acrobot enters a state within a neighborhood of the upright
configuration, a separate controller is used that achieves local
asymptotic stability to the desired equilibrium. [6]

https://github.com/TSUITUENYUE/Biped-Gymnastics


III. METHODS

In this work, we use operational space control for the
walking, leaping and running gaits of the biped robot. In the
following three subsections, we illustrate our method to obtain
desired center of mass trajectory and swing-foot trajectory
per each gait for the OSC to track. In the last subsection,
we discuss applying energy shaping control for the swing-up
maneuver of the humanoid.

A. Walking

For walking, we built upon the HW6 code, which uses an
angular momentum linear inverted pendulum controller that
generates footstep and center of mass trajectories to be tracked
by the OSC. [7] We updated the robot’s URDF to include
arms and adjusted the torso angle tracking gain to account for
changes in the upper body to establish stable walking of the
humanoid robot.

Furthermore, to mimic human behaviors, we designed a
feedback linearization controller to ensure that the robot’s
arms move in sync with the opposite side leg’s motion (e.g.,
the left arm and right leg follow the same motion, and
vice versa). Given that the humanoid robot is underactuated,
we cannot design a feedback linearization controller directly.
Alternatively, we used a ”fake” plant model that retains the
actuated arm dynamics but removes the unactuated floating
base. For arm swinging, the fully underactuated humanoid
robot is simulated, but within each simulation loop, the control
input for the arms is computed using the fully-actuated model.

B. Leaping

Leaping is the prerequisite for many visually striking
gymnastic actions. It is crucial for running and any other
movements that involve a flight-then-land phase. The first
challenge of these kinds of action is the involvement of impact
dynamics. In our methods, we simplify the ground dynamics
with a spring damper system. Another challenge presented is
the discrete trajectory optimization across different states, as
different finite states have different constraints.

1) Finite State Machine: We use four phases to describe
the leaping action. The humanoid will first follow the stance
phase of walking (lifting one leg), crouch to store potential
energy, leap, and finally reach the ground after a short flight
phase.

TABLE I
OPERATIONAL SPACE CONTROL PARAMETERS FOR LEAPING

State Translational Jacobian Friction Impact Contact
Crouch Jv < 0 Yes No Yes
Stance Jv > 0 Yes No Yes
Flight Jv = 0 No No No
Land Jv < 0 Yes Yes Yes

2) Desired Foot Placement: We implemented the Raibert
Algorithm [8] to calculate the desired foot placement. The
algorithm is defined as follows:

pfoot = pcom + kraibert(vcom − vdesired).

where pcom is the position of center of mass, kraibert is the
raibert constant, vcom represents the velocity of center of mass,
and vdesired is the desired velocity.

3) Impact Dynamics: Since ground dynamics is highly
complex, we used a spring-damper system to approximate and
simulate the ground impact forces experienced during landing.
The impact force is modeled as a combination of a spring
force proportional to the penetration depth and a damping
force proportional to the relative velocity of the contact point
along the normal direction to the ground. This is expressed
mathematically as follows:

Fimpact = kspring · δ + ddamper · vrelative.

where:
• Fimpact is the total impact force.
• kspring is the spring constant that governs the stiffness of

the virtual ground.
• δ = max(0,−pz) represents the penetration depth, cal-

culated as the negative z coordinate of the position of the
foot of the position of the foot, clamped to zero to ensure
no tensile force.

• ddamper is the damping coefficient that controls the energy
dissipation rate during impact.

• vrelative is the relative velocity of the stance foot in the
vertical (z) direction.

The stance foot velocity is computed using the translational
Jacobian Jv at the contact point, such that vstance = Jv · v,
where v represents the generalized velocities of the system.
The relative velocity in the normal direction is then extracted
as −vstance,z .

To apply the calculated impact force to the system, the
change in velocity (∆v) is computed using the inverse dynam-
ics mass matrix M and the force projection via the Jacobian
transpose:

∆v = M−1 · J⊤
v · Fimpact.

Finally, the updated velocities of the system are computed
as:

vnew = v +∆v.

This approach provides a computationally efficient approx-
imation of ground impact dynamics while maintaining physi-
cally plausible behaviors.

4) The Center of Mass Trajectory:
a) Crouch Phase: The crouch phase models the lowering

of the center of mass (CoM) trajectory. During this phase, the
CoM height decreases smoothly, preparing the system for the
subsequent stance and flight phases. The trajectory during this
phase is calculated as a linear interpolation between the end
position and the begin position.

b) Stance Phase: During the stance phase, we apply
the Spring-Loaded Inverted Pendulum (SLIP) model [9] to
describe the CoM dynamics. The relative position and velocity
of the CoM with respect to the stance foot are expressed in
polar coordinates:

r =
√
(∆x)2 + (∆z)2, θ = arctan 2(∆x,∆z),



ṙ =
∆x · vx +∆z · vz

r
, θ̇ =

∆x · vz −∆z · vx
r2

.

We calculate the radial and angular accelerations according
to the SLIP dynamics:

r̈ = rθ̇2 − k

m
(r − l0)−

c

m
ṙ − g cos(θ), θ̈ = −2ṙθ̇

r
.

where k is the spring constant, c is the damper constant, and
l0 represents the length of legs.
Velocities are updated incrementally as:

ṙi+1 = ṙi + r̈i ·∆t, θ̇i+1 = θ̇i + θ̈i ·∆t,

ri+1 = ri + ṙi ·∆t, θi+1 = θi + θ̇i ·∆t.

These are then converted to Cartesian coordinates:

x = xfoot + r sin(θ), z = zfoot + r cos(θ),

ẋ = ṙ sin(θ) + rθ̇ cos(θ), ż = ṙ cos(θ)− rθ̇ sin(θ).

The stance phase trajectory is discretized into 100 time
steps, and a piecewise cubic Hermite polynomial is used to
interpolate the CoM positions and velocities.

c) Flight phase: The flight phase follows a ballistic
trajectory dictated by gravity. The CoM position and velocity
evolve as:

x(t) = x0 + vx0 · t, y(t) = y0 + vy0 · t,

z(t) = z0 + vz0 · t−
1

2
gt2.

The velocity updates are:

vx(t) = vx0, vy(t) = vy0, vz(t) = vz0 − g · t.

The CoM trajectory at the end of the flight phase is:

pend = [x0 + vx0T, y0 + vy0T,max(z0, z0 + vz0T − 0.5gT 2)],

vend = [vx0, vy0, vz0 − g · T ].

The positions and velocities are interpolated using a piece-
wise cubic Hermite polynomial to ensure a smooth transition
between the phases.

d) Landing Phase: The landing phase assumes a negli-
gible change in CoM position due to the short impact duration
(0.001 seconds in our method). Only the velocity is updated
to account for the ground reaction force. The impact force is
calculated as:

Fimpact = kspring · δ + ddamper · vrelative,

where δ is the penetration depth and vrelative is the velocity of
the contact point relative to the ground. Using the mass matrix
M and Jacobian Jv , the velocity change is:

∆v = M−1J⊤
v Fimpact.

The updated CoM velocity becomes:

vcom, after = vcom, before + Jcom∆v.

The position remains constant, while the velocities are inter-
polated for smooth continuity using a piecewise cubic Hermite
polynomial.

5) Swing Foot Trajectory: The swing foot trajectory gener-
ation is categorized into three primary phases: flight, landing,
and stance. Each phase incorporates specific control strategies
to achieve smooth and efficient foot placement.

a) Crouch Phase: We assume no swing foot displace-
ment during the crouch phase, so the foot position remain the
same as beginning.

b) Stance Phase: During the stance phase, the swing foot
remains stationary relative to the stance leg. The current swing
foot position Y0 is updated to the desired foot placement
Y2, which is calculated by Raibert Algorithm [8] through an
intermediate position Y1:

Y1 =
Y0 +Y2

2
, Y1[2] = Y0[2] + hclearance.

The velocity at the start (v0), midpoint (vmid), and end (vf )
are defined as:

vmid =
Y2 −Y0

tend − tstart
,

where v0 = [0, 0, 0] and vf = [0, 0, 0]. The trajectory
is interpolated using cubic Hermite polynomials to achieve
smooth transitions.

c) Flight Phase: During the flight phase, the swing foot
transitions from the liftoff position Y0 to the desired foot
placement Y2, passing through an intermediate point Y1. The
intermediate point is defined as:

Y1 =
Y0 +Y2

2
, Y1[2] = Y0[2] + hclearance,

where hclearance is the foot clearance height to avoid obstacles.
The desired foot placement Y2 is calculated using the desired
velocity and Raibert’s heuristic [8]. The initial, intermediate,
and final velocities (v0, vmid, vf ) are determined as:

vmid =
v0 + vf

2
,

where v0 is the velocity at liftoff, and vf = [vx,f , vy,f , vz,f ].
The swing foot trajectory is also constructed using cubic
Hermite polynomials.

d) Landing Phase: The landing phase assumes the swing
foot maintains its position at the computed desired foot place-
ment. Due to the negligible duration of impact (0.001 seconds),
the position remains constant, while the velocity is updated
post-impact based on the ground reaction force. A zero-order
hold is employed to maintain the swing foot at Y2.

C. Running

Similar to leaping, running also involves a flight phase and
an impact phase. Therefore, the implementation on these states
are almost identical.

1) Finite State Machine: We used six phases to describe a
running cycle.

2) Trajectory Optimization: We follow the same trajectory
optimization pipeline for both center of mass and swing foot
as leaping.



TABLE II
OPERATIONAL SPACE CONTROL PARAMETERS FOR RUNNING

State Jacobian Friction Impact Contact
Left Stance Jv > 0 Yes No Yes

Flight After Left Jv = 0 No No No
Impact After Left Jv < 0 Yes Yes Yes

Right Stance Jv > 0 Yes No Yes
Flight After Right Jv = 0 No No No
Impact After Right Jv < 0 Yes Yes Yes

D. Swing-up

Given time constraints, we simplified the robot model by
treating it as an acrobot, assuming that the leg joints can lock
and remain straight. Using this model, we applied partial feed-
back linearization and energy shaping control, as outlined in
Spong’s paper, to swing the robot toward the upright position.
To stabilize the robot at the upright position, we designed an
LQR controller that linearizes the dynamics around this point
to compute the cost-to-go matrix. When the cost-to-go value
falls below a specified threshold, the controller switches to the
LQR. Last but not least, the consideration of using the full
humanoid dynamics is discussed in the future work section.

IV. RESULTS

The simulations for each motion are shown below. The full
video can be found via this link.

A. Walking

We simulate the walking gait in Drake with an initial
configuration of q0 = [0, 0.8, 0, 0, 0, θ, θ,−2θ,−2θ], where
θ = − arccos(0.8) for 5 seconds.

Fig. 2. Humanoid Walking

B. Leaping

We follow the same configuration as walking.

Fig. 3. Humanoid Leaping

C. Running

We follow the same configuration as walking. Although
we are still working on running, we have the desired CoM
trajectory as shown in Fig. 4.

Fig. 4. CoM Trajectory

D. Swing-up

We simulate the swing-up motion in Drake with an initial
configuration of q0 = [0, 0, 0, 0, 0, 0] for 20 seconds.

Fig. 5. Humanoid Swing-Up

V. FUTURE WORK

A. Humanoid Swing-up

For swing-up, instead of modeling the humanoid as an
acrobot, we could adopt the torque-coupled four-link control
approach described in the Zhang et al. paper to take advantage
of the underactuated system’s dynamics. [1]

B. Motion Integration

For running, future work may include combining SLIP
dynamics with whole body control. To integrate leaping and
swing-up, a strategy must be developed for the humanoid to
jump and grasp the horizontal bar, potentially using a claw
mechanism to facilitate the transition. One possible approach
is to solve an optimization problem that minimizes the distance
between the robot’s hands and the bar (e.g., uses OSC to
control the robot hand move toward horizontal bar). Once the
distance falls below a specified threshold, the claw mechanism
would be programmed to close and secure the bar.



REFERENCES

[1] A. Zhang, J. Qiu, C. Yang, and H. He, “Stabilization of underactuated
four-link gymnast robot using torque-coupled method,” International
Journal of Non-Linear Mechanics, vol. 77, pp. 299–306, 2015.

[2] S.-H. Hyon, N. Yokoyama, and T. Emura, “Back handspring control of a
multi-link gymnastic robot,” IFAC Proceedings Volumes, vol. 37, no. 14,
pp. 73–78, 2004.

[3] M. H. Raibert and J. Hodgins, “Biped gymnastics,” Dynamically Stable
Legged Locomotion, vol. 79, 1988.

[4] J. Peters and S. Schaal, “Learning operational space control.” in Robotics:
Science and Systems, vol. 10, 2006.

[5] R. Tedrake, Underactuated Robotics, 2023. [Online]. Available:
https://underactuated.csail.mit.edu

[6] M. W. Spong, “Energy based control of a class of underactuated mechan-
ical systems,” IFAC Proceedings Volumes, vol. 29, no. 1, pp. 2828–2832,
1996.

[7] Y. Gong and J. Grizzle, “Angular momentum about the contact point for
control of bipedal locomotion: Validation in a lip-based controller,” arXiv
preprint arXiv:2008.10763, 2020.

[8] M. Raibert, Legged Robots that Balance, ser. Artificial Intelligence
Series. MIT Press, 1986. [Online]. Available: https://books.google.com/
books?id=EXRiBnQ37RwC

[9] R. Blickhan, “The spring-mass model for running and hopping,” Journal
of Biomechanics, vol. 22, no. 11-12, pp. 1217–1227, 1989.

https://underactuated.csail.mit.edu
https://books.google.com/books?id=EXRiBnQ37RwC
https://books.google.com/books?id=EXRiBnQ37RwC

	Introduction
	Background
	Humanoid Robot Model
	Operational Space Control
	Energy Shaping Control

	Methods
	Walking
	Leaping
	Finite State Machine
	Desired Foot Placement
	Impact Dynamics
	The Center of Mass Trajectory
	Swing Foot Trajectory

	Running
	Finite State Machine
	Trajectory Optimization

	Swing-up

	Results
	Walking
	Leaping
	Running
	Swing-up

	Future Work
	Humanoid Swing-up
	Motion Integration

	References

