
Robot Pick And Place System
WPI RBE3001 C23 Team 3 Final Report

Calvin Page
Worcester Polytechnic Institute

Arturo Lemos Lee
Worcester Polytechnic Institute

Puen Xu
Worcester Polytechnic Institute

Abstract—In order to increase efficiency and reduce labor cost,
we developed an autonomous robot pick and place system which
consist of a 3 degree-of-freedom spherical robot arm, a camera,
and a robot claw that would constantly identify the location of
a ball, move to the location upon quintic trajectory, pick up the
ball, and drop it to different positions based on its color. We used
position and differential kinematics along with motion planning
to ensure the robot arm follow a smooth trajectory.

Index Terms—robot manipulation, computer vision, motion
planning

I. INTRODUCTION

An autonomous robot pick and place system is very useful
in areas such as packaging, welding, and waste recycling.
Not only that it cuts down labor cost, it increases efficiency
in a variety of industries. Here we present a robot pick
and place system with a 3 degree-of-freedom spherical robot
arm that integrates robot manipulation, motion planning, and
computer vision to sort balls of different colors. We will
first describe the development and implementation of the
robot system, including the derivation of the position and
velocity kinematics, system architecture, robot arm model,
and the image processing pipeline. Then we illustrate and
analyze the results we obtained such as the intrinsic and
extrinsic camera calibration, methodology of object detection
and localization, and the logic of the sorting system. Finally we
conclude the report with comments about the current project
and suggestions for future projects.

II. DEVELOPMENT AND IMPLEMENTATION

A. Forward and Inverse Position Kinematics

To determine task space configuration with joint configura-
tion given, we derived a forward kinematics solution to convert
joint values to end-effector position. Here we first labeled the
coordinate system of each joints of the robot arm using DH
convention, as shown in Fig. 1, and derived DH parameters
for calculating forward kinematics, as shown in Table I.

After deriving DH parameters, we formed transformation
matrices A1, A2, and A3 and the corresponding transformation
matrices with respect to the base frame T1, T2, and T3. Given
that these homogeneous transformation matrices are functions
of θ1, θ2, and θ3, once we acquire the joint values, we could
calculate the position for the end-effector.

To derive a joint space solution to reach a specific point in
task space, we derived two inverse kinematics solutions. The

Thank you to Professor Farzan and SAs that help us throughout this project.

Fig. 1. Coordinate Systems labeled by DH Convention

TABLE I
TABLE OF DH PARAMETERS

DH Parameters
i θ d a α
1 θ∗1 L0 + L1 0 - π/2
2 θ∗2 - π/2 0 L2 0
3 θ∗3 + π/2 0 L3 0

first one makes use of geometric approach while the second
method employ numerical methods.

For the geometric approach, as shown in Fig. 2 attached
in the Appendix, the position of the task space position
is given as Ow = [Xw, Yw, Zw]. Then we could calcu-
lated θ1 = arctan(Yw/Xw), making use of the projection
onto the x − y plane. Next, we could derive cos(θ2) =
(r2 + s2 − L2

2 − L3
3)/(2L2L3) by using law of cosines.

While sin(θ2) =
√

1− cos(θ2)2, we got the value of
θ2 = arctan(sin(θ2)/ cos(θ2)). Finally, to get the value of
the last joint θ3, we made use of the law of cosines and
trigonometry to find θ3 = arctan(s/r) − θ, where θ =
arctan(L3 sin(θ3)/(L2 + L3 cos(θ3))).

For the numerical method approach, we first made a guess of
a joint configuration that might give the desired end-effector
position, and then we used forward kinematics to compute
the end-effector position of the guess configuration. Next, we
compared the current task space position with the desired
position. If the difference is not small enough, we move the
current position toward the desired position and iterate the
process until the difference is smaller than tolerance.



Fig. 2. Inverse Kinematics Derivation

B. Forward and Inverse Velocity Kinematics

In the previous section, we derived a relationship between
joint space configuration and task space position. Here we
calculate Jacobian matrix of the robot arm to relate joint
velocities and end-effector velocities.

By geometric approach, we formed the Jacobian matrix,
as shown in Table II. Then we used forward differential
kinematics to calculate end-effector motion with given joint
configuration and velocities.

To calculate the joint velocities based on end-effector mo-
tion, we used the inverse Jacobian matrix. Here we noticed
that singular configuration is a problen when doing inverse
differential kinematics. Therefore, we programmed the robot
to constantly make aware of the determinant of the Jacobian
matrix to avoid running into a singularity.

TABLE II
TABLE OF JACOBIAN MATRIX

DH Parameters
Joint 1 Joint 2 Joint 3

Jv Z0 × (On −O0) Z1 × (On −O1) Z2 × (On −O2)
Jw Z0 Z1 Z2

C. System Architecture

The robot arm that we used is a serial 3 DoF spherical
manipulator with three servo motors to control revolute joints
and another servo on the gripper to pick up objects. To obtain
the joint angles and velocities, the robot would need to read the
motor encoder values and perform calculation using a 32-bit
ARM Cortex-M4 microprocessor (Microchip ATSAMD51).
However, in this course, we had been provided with pre-
compiled embedded firmware with basic functions so that we
could focus on the high-level logic of the robot manipulation.

Another major component of the pick and place system is
the camera. We used MATLAB add-in toolbox to calibrate
and communicate with the camera so that we could incorprate
vision-based manipulation in our project.

D. Robot Arm Stick Model

In order to visualize the system, we created a 3D stick model
to mimic the robot arm where each link is represented by
a line and each joint and the end-effector is represented by
a point. In addition, we labeled the axes of the coordinates
of each frame, including base, end-effector, and intermediate
frames, by vectors. In addition, we also included the end-
effector velocity as a vector to the stick model so that it
could reflect in which way and what speed the end-effector
is moving.

Fig. 3. Robot Stick Model of joint configuration [15, 250,−60]

E. Image Processing Pipeline

To be able to recognize objects and pick them up, we needed
to develop an image processing pipeline. When designing this
pipeline, we prioritized simplicity to aid in debugging and
increase processing speed. A number of different HSV masks
were created with MATLAB’s Color Thresholder app to filter
out balls and dry-erase marker caps of varying colors. One
of these masks would be used to filter out pixels that do not
encompass the desired object. Then, this filtered image would
pass through the MATLAB vision toolbox’s Blob Analysis,
where centroids of blobs would be recognized. Although the
input image often contained noise, this noise would not be
recognized as a blob in the Blob Analysis, so it was not an
issue.

III. RESULTS

IV. DISCUSSION

A. Intrinsic Camera Calibration

To perform camera calibration, we would need to calcu-
late extrinsic parameters such as homogeneous transformation
Hworld

camera, intrinsic parameters such as focal length, the op-
tical center (principal point), skew coefficient, and distortion
coefficients for radial and tangential distortions.

In our project, we used the MATLAB Single Camera
Calibrator App to calculate intrinsic camera matrix. First,
we took forty pictures of the checker board using the cam-
era and checked if the coordinates in all the pictures were
aligned. Then we evaluated the calibration by examining
extrinsic parameters, mean reprojection error, and undistorted



Fig. 4. Extrinsic Parameters Visualization

Fig. 5. Mean Reprojection Error per Image

image. The extrinsic parameters are in fact the frame of
the checkerboard in the pictures. Mean reprojection errors
are the distances between detected and associated reprojected
points. The calibration is considered satisfactory when a mean
reprojection errors of less than one pixel is achieved. Here, as
shown in Fig. 3, we achieved a mean value of 0.4 pixels,
which showed that the camera was well calibrated. Finally,
we exported camera parameters and corresponding MATLAB
script so that we could easily calibrate the camera every time
we would like to operate the robot arm.

The rationale behind the checkerboard calibration method,
in our opinion, is that there is a relationship between the pixel
coordinates [x, y] and the camera coordinates [Xc, Yc, Zc], and
let us denote this relationship as a function g(f, c, s). Here
the parameters of the function are all intrinsic parameters of
the camera, where f is focal length, c is optical center, and
s is skew coefficient. Once we got sufficient number of pixel
coordinates and camera coordinates by taking at least twenty
pictures, we could derive the relationship between the two
quantities and calculate the intrinsic parameters.

B. Camera - Robot Registration

Once we calculated the intrinsic parameters of the cam-
era, we performed extrinsic calibration to establish camera-
robot registration. We first obtained the extrinsic calibration
parameters in an transformation matrix and a position in the

Fig. 6. Intrinsic Calibration

pixel frame (P pixel). Then we used MATLAB built-in function
to compute the position in the local reference frame of the
checkerboard (P checker). Finally, we measured the distance
between the robot and the camera to derive a homogeneous
transformation matrix of the checkerboard frame with respect
to robot’s base reference frame (T base

checker). Once we multiplied
to position in the checkerboard frame by the transformation
matrix , we would obtain the position to the robot (P base).

Fig. 7. Extrinsic Calibration

One thing here we noticed was that, in practice, this method
would only work well for z = origin of the checkerboard
reference frame. This was because if z axis is above the
checkerboard, it is hard to obtain the transformation matrix of
the checkerboard frame with respect to robot’s base reference
frame (T base

checker) as it was more difficult to measure the
distances between these two frames.

C. Object Detection and Localization

In this section, we performed image processing and derived
the centroid location of the balls. We first un-distorted the
frames from the camera using the calibration parameters. Then
we enhanced the image by image segmentation. Once the
image is processed, we could dtermine the centroid position
of the balls by using the MATLAB built-in function.

To detect and localize balls of different colors, we created
a mask for each color using MATLAB built-in functionality.



Fig. 8. Coordinate frames of the Robot-Camera System

Here we used HSV color space instead of the widely-used
RGB color space. The reason was that the lighting condition
in the lab do not remain the same. Sometimes when we switch
our spot, we found the color of the balls different in the camera
view due to the lighting. As demonstrated in class, by using
RGB color space, the color thresholds are hard to obtain as
slight change in lighting will result in large variance in the
values in all three RGB channels. To prevent this issue, we
chose to HSV color space it is easier to threshold for a color
using Hue channel, and the lighting will only affect the value
(or brightness) channel.

During the experiment, we found out that black balls cannot
be used for the pick and place system. This is because
that when we create a mask for a black ball, it will be
easily misinterpreted by the black blocks on the checkerboard.
Despite that we could tune the HSV parameters for the mask,
the camera would still easily mistake the black squares as
black balls. Therefore, to prevent the autonomous robot pick
and place system grabbing imaginal black balls non-stop, we
did not use black balls for the purpose of this project.

D. Object Localization

Obtaining the position of the centroid of the balls, we
took into consideration of the height of the balls. Through
measurement, we found the radius (or height for pick up
location) is 10mm. Then we used our knowledge of linear
algebra to compute the actual (x, y) position based on the
location from pointsToWorld().

Here let us denote the location from pointsToWorld() as
P checker. We first defined a new coordinate system called
Fpost whose origin is at the central intersection of the post
and platform and axis orientations are the same as the checker
frame (Fchecker). Through measurement, we found the trans-
formation matrix between the two frames mentioned above
(T checker

post ) and the camera position with respect to the post
frame (Cpost). With homogeneous transformation, we could
derive the position for the point (P post). Now that we obtained
the position of both the point and the camera with respect to
the post, we could set up a vector from the point to the camera
(P⃗C

post
). Since both the height of the ball and the camera is

Fig. 9. Side view of the Robot-Camera System

known, we could use similar triangle theory to calculate the
actual location of the ball with respect to the post (P post′ ).
Finally, through measurement, we could get the transformation
matrix from the robot base frame to the post frame and we
could use matrix multiplication to get the actual location with
respect to the frame of the robot arm.

Fig. 10. Compensation For Height

E. Final Project Challenge

For the final project we implemented the fully automated
pick and place robot sorting system that could constantly
detect and localize a ball, move to a position through a quintic
trajectory to pick up the ball, and move a place based on its
color to drop it off.

To accomplish the challenge, we implemented a state ma-
chine, which is extremely helpful to complete a logistic task
and for debugging. First, the robot would enter a ”looking”
state where the robot move to the zero position ([0, 0, 0] in joint
space); it would use the camera to detect whether there is a ball
on the checkerboard; if not, it would keep looking; otherwise,
it would set the state to ”waiting for placement”. Next, in the



”waiting for placement” state, it would try to localize the ball
twice, as long as the 2 locations of the ball are within tolerance
(1mm), meaning that it was not moving, it would calculate the
position of the ball with respect to the robot frame, generate
a quintic trajectory in task space to move to a point above
the ball, and move to the ”vert traj” state. However, if the 2
locations are not similar enough, which means that the ball
is moved, it would return to ”looking” state to keep detecting
for a ball. Once the robot is in the ”vert traj” state, the robot
would move to the point above the ball following the trajectory
generated in the previous state. Having it move to the point
above instead of moving directly to the pick up position would
allow the robot to avoid obstacles. Upon reaching the position,
the robot will open the gribber and set the state to ”grab traj”.
In the ”grab traj” state, the robot closes the gripper and move
to ”grabbing” state in which the robot generate a trajectory
to move to a position where it drop the ball categorized by
its color. Finally, it will enter the ”place traj” state where the
robot move to the drop off position and proceed to ”placing”
state that it opens the gripper and drops the ball.

Fig. 11. State Machine Diagram

Here we used quintic trajectories in task space. Using
quintic trajectories allows the robot to follow a trajectory with
zero starting and ending velocity and acceleration so that the
motion is smooth around via-points with no jerk. The reason
we were using task space trajectory is that it follows a straight
time when we perform motion planning on the end-effector.
This would benefit the robot by saving time and avoid hitting
obstacles. For the first extra credit, although we did not have
time to complete, we made a mind experiment. In our opinion,
we could use the velocity trajectory to accomplish dynamic
camera tracking. The input to the tracking function would be
the position of the ball in the camera view, which is a variable,
so that the robot arm would keep approaching the ball with
a certain speed until it reaches the ball (and the ball stop
moving). After it reached the ball, it would did the same task
to grasp, move, and drop.

As an extra credit, we also programmed the robot so that it
could also pick up blue markers. The approach were very the

same as picking up the balls. We first constructed a mask for
a blue marker, then we added the functionality to our main
code, and it would behave the same as it were picking up a
ball.

Fig. 12. Robot Arm picking up a green ball

CONCLUSION

In this project, we developed an autonomous pick and place
system for sorting balls of different colors. We implemented
knowledge from lectures such as position kinematics, velocity
kinematics, motion planning, and computer vision into prac-
tice. In addition, we had a hands-on experience programming
a robot arm which be beneficial for our future career.

Here we want to appreciate Professor Farzan and SAs for
their help and guidance throughout the project. They have
tackled the low-level embedded communication and developed
basic function so that we could focus on the high-level logic.

In addition, we would like to propose some suggestions for
future project:

• Explain in more details about what should be included in
results and discussion. Sometimes it could be confusing
that students just combine these two sections.

• To derive position kinematics, one task in the lab could
also be picking up a ball in a fixed position without a
camera so that students could get a heads up the algorithm
of ball picking and this could also verify the position
kinematics solution as well.

• Discuss a bit about the system architecture of the robot
arm. Although we are told to treat the system as a black
box, we are interested in knowing more about the robor.
Sometimes when the robot run into a technical error, we
have no clue how to solve it on our own. Thus, it could
be beneficial to spend sometime in the very first lab to
talk about the system architecture.



TABLE III
CONTRIBUTION

Calvin Page Puen Xu Arturo Lemos Lee
Contibution

CONTRIBUTION

APPENDIX

Figures

Project Video

Git Repository


